A Sharp Estimate for the Hilbert Transform along Finite Order Lacunary Sets of Directions

نویسندگان

  • FRANCESCO DI PLINIO
  • IOANNIS PARISSIS
چکیده

Let D be a nonnegative integer and Θ ⊂ S1 be a lacunary set of directions of order D. We show that the Lp norms, 1 < p < ∞, of the maximal directional Hilbert transform in the plane HΘ f (x ) B sup v ∈Θ p.v. ∫ R f (x + tv ) dt t , x ∈ R 2, are comparable to (log #Θ) 2 . For vector elds vD with range in a lacunary set of of order D and generated using suitable combinations of truncations of Lipschitz functions, we prove that the truncated Hilbert transform along the vector eld vD , HvD,1 f (x ) B p.v. ∫ |t | ≤1 f (x + tvD (x )) dt t , is Lp -bounded for all 1 < p < ∞. These results extend previous bounds of the rst author with Demeter, and of Guo and Thiele.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Convergence of Lacunary Spherical Means

We show that if f is locally in L log logL then the lacunary spherical means converge almost everywhere. The argument given here is a model case for more general results on singular maximal functions and Hilbert transforms along plane curves [6].

متن کامل

Directional Discrepancy in Two Dimensions

In the present paper, we study the geometric discrepancy with respect to families of rotated rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrepancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets with small ...

متن کامل

On Lacunary Statistical Limit and Cluster Points of Sequences of Fuzzy Numbers

For any lacunary sequence $theta = (k_{r})$, we define the concepts of $S_{theta}-$limit point and $S_{theta}-$cluster point of a sequence of fuzzy numbers $X = (X_{k})$. We introduce the new sets  $Lambda^{F}_{S_{theta}}(X)$, $Gamma^{F}_{S_{theta}}(X)$ and prove some inclusion relaions between these and the sets $Lambda^{F}_{S}(X)$, $Gamma^{F}_{S}(X)$ introduced in ~cite{Ayt:Slpsfn} by Aytar [...

متن کامل

Bilateral Regularization in Reproducing Kernel Hilbert Spaces for Discontinuity Preserving Image Registration

The registration of abdominal images is an increasing field in research and forms the basis for studying the dynamic motion of organs. Particularly challenging therein are organs which slide along each other. They require discontinuous transform mappings at the sliding boundaries to be accurately aligned. In this paper, we present a novel approach for discontinuity preserving image registration...

متن کامل

Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group

We inspect the relationship between relative Fourier multipliers on noncommutative Lebesgue-Orlicz spaces of a discrete group Γ and relative Toeplitz-Schur multipliers on Schatten-von-Neumann-Orlicz classes. Four applications are given: lacunary sets, unconditional Schauder bases for the subspace of a Lebesgue space determined by a given spectrum Λ ⊆ Γ , the norm of the Hilbert transform and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017